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Exact solution of generalized t-J models in one dimension 
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Received 23 December 1993 

Abstract A relation between the anisotropic t-J model and a generalized s i x - v e m  model has 
been established. On the basis of this relation, we oMain h e  exau Bethe ansatz solution for the 
gmund state energy of anisotropic I -J  model for arbitrary spin and special values of coupling 
parameters. We consider also the anisotropic genedimion of t-3 model with localons. 

1. Introduction 

The discovery of high-temperature superconductors has greatly stimulated the interest in 
strongly correlated systems. Recently there has been a renewed interest in the one- 
dimensional t-J model as an integrable low-dimensional version of a saongly correlated 
electronic system. Zhang and Rice [I]  have shown that a wide class of extended Hubbard 
models can be suitably reduced to the t-J model. Anderson [2] claimed that due to the 
strong quantum fluctuations in low dimensions, one and two dimensions may have common 
aspects, so that it is very important to understand exact results available in one dimension. 

This model describes electrons with nearest-neighbour hopping, with the constraint that 
two electrons are not allowed to simultaneously occupy the same site. This restriction 
corresponds to an implicitly infinite on-site Coulomb repulsion. ’ h o  types of interactions 
between electrons on nearest-neighbour sites are considered a charge interaction of strength 
V and a spin-exchange interaction J .  The Hamiltonian of the extended version of the t-J 
model has the form I3.41 

where cj. annihilates an electron with spin components. We assume for convenience that 
s = 1,.  . . ,2S + 1, P is the projector on the subspace of non-doubly occupied states. We 
have introduced an anisotropy in the charge interactions through a matrix Vs,s,. 

In the isotropic case VS,+ = V the Hamiltonian (1) corresponds to the traditional r-J 
model which was exactly solved by the Bethe ansatz method [3,5-71 for the values J and V 
corresponding to the supersymmetric situation (V  = r t J  = f l )  and S = 112. The critical 
exponents of this model were calculated in [8]. The generalization of above-mentioned 
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results for arbitrary spin S was carried out in [4,9,10]. Other generalizations of the t-J 
model were studied by Kliimper et al [ 111 and Essler et a1 [12,13]. 

In this paper we consider an anisotropic generalization of the t-J model ( I )  and show 
that it is soluble for arbitrary spin and special values of the coLplings J and Vy,lf. We 
consider also an anisotropic t-J model with localons for S = 112. The isotropic version of 
the last model was proposed and solved exactly in [12]. The exact solution for the ground 
state energy is presented for the onedimensional anisotropic t-J model with spin S = 112. 

2. Perk-Schultz model 

Our starting point is the multi-component generalized six-vertex model, also called Perk- 
Schultz model [14, IS], which was diagonalized by Schultz 1161 in the most general form. 
Some interresting applications of this model in quantum field theory were considered by de 
Vega and Lopes [17]. 

Schultz [16] considered a two-dimensional square lattice with the variable on the lattice 
bonds taking on values 0, 1,  . . . , q - 1 = 2S + 1. Each type of configuration of four bonds 
meeting at a vertex has associated with it an energy and a corresponding Boltzmann weight 
R$'. see figure 1. In general, there are q4 types of vertices. The model under consideration 
is defined by a one-parameter family of vertex weights R$(u). where the non-vanishing 
elements of the R-matrix are 

R:Z(u) = sinh(q + E&)/ sinh 7 

Rtl(u)  =~ .~s inhu / s inhq  (2) 
R:i(u) = exp[u sign(p -a)] 

where a, p = 0,1,2, " ' , q  - 1 and a # p, with 
weights (2) are a solution of the Yang-Baxter equations (181, which ensures integrability. 

= = *l and e. = il. The 

Figure 

a 

I of the Perk- model. 

A quantum Hamiltonian for an integrable SU(2S+2) spin chain can be obtained through 
the well known relation [18] 
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Figure 2. V e x  amfiguration of compsitive lattice 

where T(u)  is the row-to-row transfer matrix 

and N is the number of sites per row. 
At q = 2 (s = 0) equations (2) determine the ordinary six-vertex model and equation (3) 

gives the Hamiltonian XXZ chain with spin 3 = l/2 (5 = S + 1/2) [18]. For arbitrary 
q we obtain a generalization of these results to the case of spin .f > 1/2 [14]. In the 
isotropic limit ( q  + 0, U -+ 0 but u / q  is fixed) the trigonometric (hyperbolic) solution (2) 
reduces to the rational one and equation (3) gives the Hamiltonian of the Lai-Sutherland 
model [4,5]. The proof of the equivalence of this model to the isotropic t-J model at the 
supersymmetrical point is based on the fact that the Hamiltonians of both models can be 
presented in terms of a graded permutation operator [ 19,201. This approach is not available 
for the trigonometrical solution (2) and the purpose of this paper is to address two points: 
(1) what is the generalization of the t-J model associated with Perk-Schultz solution (2) 
or with spin Hamiltonians which were obtained from this solution? (2) What is the exact 
solution of this generalized t-J model? 

3. Anisotropic t-J model with arbitrary spin 

In contrast to [141, we consider the lattice with weight (2) as a composite one, which consists 
of q - 1 sublattices (see figure 2). The edges of each sublattice have two possible states, 
they may be either empty (a = -1) or occupied (or = +I). Then each composite edge of 
the original lattice has 21 possible states but we exclude states involving double occupancy. 
In this case we have only q possible states for the edges of the original lattice: 

or = (a1, . . . .orq-l) = (-1,. . . , -1); (+l, -1,. . .( -1);. . . , (-1.. . ., -1, +I). 
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In this way we may consider the original model in the spirit of 1211 as a multi-sublattice 
system with interactions between sublattices of the vertex-vertex type. Each sublattice 
corresponds to the six-vertex model. The interactions between the sublattices lead to a 
change in the Boltzmann weights of the composite system which are no longer products 
of the sublattice Boltzmann weights but are given by (2). In this equation we will now 
consider the indices CY, p, p, v as (4 - 1)-component quantities, e.g. 

CY = ( C Y I , .  . . .lyp-I) 
p = (PI,. .., pq-I) 

B =(PI, .  . ., pq-1) 

U = (VI,. . . , up-1). 

Then the vertex weights have the form 

where 

Substituting the form (5) into (3) and using the standard definition of Pauli spin operators, 
one obtains the Hamiltonian of the (4 - 1) sublattice spin model 

N 

j=l  
x = XXj,j+l 

xj, j+l = C ~ ~ ( ~ ~ r ~ f i l , s +  oj’+l,so;) 
‘I-1 

S=I 
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where nj is the density operator 

*=I 

N is the number of lattice sites. The constraint imposed on spins is that the configurations 
which contain more than one spin up on each lattice site are shictly prohibited. Due to 
this constraint we have omitted some terms in equation (6). which contain more than one 
operator ujr with the same index j .  

Using a Jordan-Wiper transformation [221, we obtain a Hamiltonian of the generalized 
t-J model 

n = - C  &soP(c~scj+l.s+ ~;+l,~cj,s)~ 
1,s 

- E s . s ' C ~ ~ C j , s ' C i + l , s C j + l . s f C o S h q  E(€o + €s)nj,nj+i,s 
i..f j . s  
@ 

with 

Equation (7) determines the integrable cases of the Hamiltonian (1). 

Schultz paper [I31 and is given by 
The exact solution for the total energy of the Hamiltonian (7) can be obtained from the 

N. 
E = €0 Ncoshq - 2sinhzq [cosh? -cos A?) I j = l  

q-1 Mr-I sin(Ay) - A;-') + iqq/2) n ( & s l ~ + l . s ) ~ ~  n (1) - A(l-l) 
s=o j ,= l  sin(Aj - iqq/2) 

sin($' - A;) + ie~+lq) M + I  sin@) - AY) - icl+1q/Z) 
- j,=l sin(,Ly) -A;) - 4 s )  n .  sin(Ay) -AY) + iq+lq/Z) 

j - 1 .  ..., MI 1=0,1 ,  ..., q - 2  (9) 

where 

,a.?) I = 0 El.! 1 M - I  = N Mq-1 = 0 Nj = Mj-1 - Mj 

Nq-n is the number of electrons with spin component m, NO is the number of empty sites. 
To the author's knowledge, the Hamiltonian (7) includes as particular cases all integrable 

generalizations of t-J model considered previously (see, however, [ 111). In particular, in 
the isotropic l i t  for the = 1, E#,+ = €0 = -4 the Hamiltonian (7) yields the integrable 
SU(2S + 2) generalization of the t-J model solved by Lee and Schlottman 141 (see also 
[9,101). 
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4. Anisotropic t J  model with localons 

Next we consider the anisorropic generalization of the t-J model with localons for the spin 
S = 1/2. The isotropic version of this model was proposed and solved exactly by Essler et 
a1 1121. The exact solution [12] is made possible by the fact that hopping processes interfere 
in such a way that the number of doubly occupied sites called localons is conserved. Thus 
in this model there are three types of excitations and we must consider the solution of 
Yang-Baxter equations (2) at q = 4 for the two-sublattice system i.e. add states involving 
double occupancy. We suppose also that the number of localons is conserved in each lattice 
site as ordinary mows in the six-vertex model [18]. Then the above procedure gives the 
following Hamiltonian: 

N 
'H = CXj.j+l 

j=1 

+ coe's-d')'(njsnj+l,,, + nj,njd)] 

+ 2sifiq(njinjznjti.z - njznjti.injti.2) + Cci njinjznj+l.lnj+l.z 

+ EO [cosh - e-'%j - efoqnj+l] . (10) 

The exact solution for the total energy of the Hamiltonian (10) is given by equations (8H9) 
at q = 4 where N3 is the number of localons. 

( 1 :  ) 

The Hamiltonian (IO) in the isotropic limit (V  + 0) for the particular choice 

E SO - - -Es3 = -E30 = -El2 = 1 €0 = €3 = -€s = -1 (s = 1,2) 

yields the f -J  model with localons which was considered by Essler et al [12]. For other 
choices of e; we obtain other integrable cases which correspond to different gradings of 
the model. It is noteworthy that equations (8)-(9) ensure that we are able to obtain the 
complete exact solution of the problem under consideration. However, in some cases this 
problem is not simple and equations (9) have to be solved numerically. 

5. Ground-state energy 

In conclusion we present the exact solution for the ground-state energy of the anisotropic 
f-J model (7) for the S = 112 spin in the physically more relevant case &,o = 1, 
cSs, = EO = -e, = - 1 (s, s' = 1,2). To obtain a closer relation with previous work [3,5- 
71, we omit the last term in equation (7). It leads to only a hivial shift of -€ONO cosh q in 
energy. In general, the ground state consists of a certain number of singlet bound pairs and 
a certain number of h e  electrons with the same spin. But in the absence of an external 
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magnetic field, there are equally many electrons with up and down spin, and the ground 
state contains only bound pairs characterized by a pair of complex electron rapidities 

U, = 212,. (11) 

Using (1 l), equations ( 8 x 9 )  are reduced to the following set of equations after some simple 
algebra: 

1 
2 A,' = -(ua k iq) 

eo(u) = -4coshq +2sinhqO'(u; q )  
'@(U; q )  = 2 arctan(coth q tan u/2) 

NO(vg: q )  - c O ( ~ g  -U,: q )  = Z n J ,  

(12) 
- n < @(U; q )  < n 

M 

(13) 

where M = NI = N2 is the number of bound pairs, P is the momentum of the state 
under consideration, Ja are integer (half-integer) numbers for even (odd) M + 1. They are 
restricted to the interval lJul < J,, = ( N  - M - 1)/2 [7]. At half-filling, the number 
of available positions is N/2, so that there is no freedom in distributing the numbers Ja. 
Away from half-filling, the number of available states exceeds the number of actual pairs, 
so that freedom is left in the choice of the &'S. The ground state energy is obtained by 
choosing lJul as close as possible to J-. 

In the thermodynamic limit N -+ co, M -+ M for a fixed ratio M/N, the value up fill 
the intervals [-n, -UO] and [UO. n]  uniformly with density u(u). From (13) we obtain an 
integral equation for the distribution function u(u), 

*=I 

with the subsidiary condition 

[/T+[]u(u)du = M/N 

where 2p = 2M/N is the density of the electron liquid.Thus the ground state energy can 
be deduced from the solution of the integral equation (14) as 

E = 2cosh q (1 - 2p) - 4n sinh qu(0) (16) 

and is a function of the filling p. At half-filling M = N/2, the solution of (14)-(16) can 
be obtained in a closed form: 

1 1 
1 + exp(2mq) 

m 
(17)' 

In the isotropic limit ( q  + 0). the ground-state energy is E = -21n2 in agreement with 
references [3,7,231. 

Away from half-filling, the integral equation has to be solved numerically. For all filling 
values, the ground state is a liquid of singlet bound pairs. In conhast to the isotropic t-J 
model [3,7], these pairs have a non-zero binding energy, so that a threshold magnetic field 
is required to overcome it. Therefore, these pairs are Cooper-like bound pairs. 

A more detailed study of the superconductivity properties of the model is certainly 
needed and will be the subject of future investigations. 
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